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A Computer-assisted Instruction Program

for Exercises on Finding Axioms*

I
o4 :
f/ ‘ by Adele Goldberg and Patrick Suppes

A, e

. This paper describes an interactive computer-

@
(]

assisted system for teaching elementary mathematical logic,

which was designed to handle fdrhalizations of first-order
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E é theories suitable for presentation in a computer-assisted
g P} instruction (CAI) environment, The system provides tools
% with which the user can develop and then study a nonlogical
g % axiomatic theory along whatever lines he specifies. These
E ; tools include a proof-checking program that allows the user
é; % to construct derivations by taking advantage of  the
i {E theorem-proving capabilitigs of the computer,
; Results of preliminary investigations using this
: [I computer-assisted teaching system in a manner designed to
? ~ give the studeqt greater control over the organization of
j his curriculum are summarized in Section 2, and Section 3 _ |

outlines initial studies on the uses of mechanical theorem
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provers in teaching about proof construction.
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1. Basic Instructional Capabilities

The instructional system is written ~in  the LISP
programming language for a DEC PDP~10 computer at the CAI
Laboratory of the Institute for Mathematical Studies in the
Social Sciences (IMSSS), Stanford University. Figure 1, a
block diagram of the basic system, views the program as an
interpreter made up of two components. One, call it C, is
a éet of inference rules and proof procedures used in
constructing derivations (DERIVE mode). It is defined in
Language A (AXIOMATIZE mode)., With A, the user is able to
specify the vocabulary and axioms and to derive new rules
of inference from axioms and established theorems. The
names of the axioms, theorems and new rules, with
1nstructions on how to use these rules, are learnéd by A
iand added to C, which is further augmented by the basic
Jlogical system, Specifically, this includes primitive
rules to support a formalization of first~order predicate
calculus with identity--quantifier rules, the rule of
detachment (called "affirm the antecedent” and abbreviated
AA), rules governiny the identity relation, proper
substitution (ps) and replacement, and procedures to

construct conditional and indirect proofs (CP and IP).

Insert Figure 1 about here
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command
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1
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PRESTORED CURRICULUM

Derivation problems
and questions

'Fig. 1. Block diagram of the ingtructionsl system. '
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In the DERIVE mode, the interpreter takes on the

‘role of a proof checker to verify that each step of a proof

constructed by the user is a valid consequent of a set oOf

statements of the theory. 1In such an interactive system,

the user indicates a proof step by typing the name of a
rule in C, The rule may refer to several previous lines of
the proof and may include a reference to an occurrence of a
term 1in a previous line. A properly formulated rule is a
request to have the program generate a new 1line of the
proof. The proof checker examines the format and intended
application of each rule. If a rule is poorly formed, the
user receives a message that explains what error was
committed. .

Figure 2 shows a simple example of a proof
congtructed within the s8system, Any information £yped by

the user is underlined; the rest is typed by the computer.

- ot vap S v wtn

Insert Figure 2 about here

In the proof in Figure 2, the user typed WP to
indicate that he wanted to type a working premise. Derived
rulg.LC ugsed in line (3) is a special case of the classical
gsentential rule of simpliffcation; we use it to infer the

left conjunct of a conjunction. The rule CP, for

conditional Qfoof, is a request to generate a conditional
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PROVE (P=>Q)->((P & R)=->0)

“IWP (1) P->0Q

i
- N
i

s Wp (2)
t 2LC (3)
$3.380 - (4) Q

$2,4CP (5) - (P & R)=->Q

11, 5C (6) (P=>Q)->((P & R)=->Q)

0

U

CORRECT. ..

Fig. 2. Sample proof (underlining indicates

- student input).
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statement from a working premise and some line already in
the proof, The production of a line matching the problem
exXpression 1is not sufficient to guarantee that the user has
constructed a complete proof. Any working premises th#t
have been introduced must be discharged in proper order by
a conditional or indirect proof.

The proof checker can provide error messages for
the rules it learns from the user. The same analysis
routines that process rules and generate new lines of the
proof are also used to compute error messages. These
error-analysis procedures generate explanations of how each
rule may be applied., The explanations include sample proof
steps which, if possible, reference lines already in the
user’s proof, In this manner, the user can receive
immediate feedback to help him reexamine the structure of
the theory he himself has spscified.

Sample recursive error messages for sentential
logic are shown in Figure 3. The mnemonic DC refaers to the

principle of inference modus tollens. Hopefully no single

student would ever make S0 many mistakes fn a single

exercise,

- -

Insert Figure 3 about here

Labeling the user as either a teacher or student is
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g PROVE (P=>Q)->((NOT Q -> NOT P)-)>NOT P)
o we (1) 5%
Y, - s ¥R (2) NOT Q => NOT B
WP (3) ok
[— $ 3. 1AA |
- LINE 3 MUST BE A CONDITIONAL
r $1.3AA
LINE 2 MUST BE THE ANTECEDENT OF LINE 1
ol 1A (4) o
. $2.3C  (5) NOT @
é -l 12,4, 31IP - _
» LINE 2 WAS NOT THE LAST WORKING PREMISE INTRODUCED
? \} :3,4, 2IP | o
E " LINE 4 IS NOT THE DENIAL OF LINE 2
% {; $3,4,5IP (6) | NOT P
:5.2CP |
f 1? : LINE 5 IS NOT A WORKING PREMISE
f , 12.6CP (1 (NOT @ => NOT P)=)> NOT P
~ f $1,7CP (8) (P=>Q)=>((NOT Q => NOT P)->NOT P)
/ CORRECT. .. | | R
Fig. 3. Sample error méasages.




unnecessary, It 48 possible for the user to devise a
- curriculum for teaching others about the axiomatic ‘system
he has specified, so the user might be a teacher writing a

computer-assisted course or a student experimenting with

newly acquired skilla in proof construction. Although the

teacher may pteecrfbe a curriculum, ‘hia student may
interrupt the flow of exercises to make up his own
ekerc;sas. | |

As shown in Figure 4, the student indicates his
intention to alter the curriculum by typing the instruction
INIT. He may avail himself of this .option to test any
ideas he has acquired about proof strategles or aboﬁt the
provability of some expression. He may raepeat an exarcise
for practice, try more difficult derivations than those
given him or prove lemmas that would help make the
teacher~defined exercises easier to solve. He thus can

alter the curriculum to suit hie individual instructional

needs, In Figure 4 we see how a student derived a new rule

of inference from a lemma he has prbved and then used the
rule and two theorems to complete the exercise given to
him, The two theorems are shown at the bottom of Figure 4.
grror messages computed for the derived rﬁle have also been

included,
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Insert Figure 4 about here

The student is not required to follow a particular
solution path in ordei- to construct a valid derivation. He
is always free to explore within the bounds set by the
inference rules, to ask questions about rules and to try
anf approaches he thinks are promising for finding a proof,
However, the degree of astudent control over the curric}xlum
can be changed at the teacher’s discretion. By varying the
degree of freedom -given the student, we will in time be
able systematically to test the comparative effectiveness
of student—-controlled versus fixed-branchiné CAI schemes.

In the present version of the instructional systenm,
the teacher can block use of the INIT command, especially
whel':e consecutive experience with a set of exercises is
desirable, or the teacher can indicate in the curriculum
that a problem must be solved with or without the use of
certain rules, Once the student has completed a valid
solution, the ‘proof checker chains through the ssequence of
rules that entered into the derivation to determine whether
the student constructed the proof within restrictions
specified by thé teacher., If the student has not
constructed a solution within the required restrictions,

the proof checker will ask him to repeat the exercise.
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DERIVE (NOT P)=>(P -> Q)

$INIT

' YOU CAN NOW REQUEST AN EXERCISE OR
DERIVE A NEW RULE OF .INFERENCE,
TYPE FIN WHEN YOU ARE DONE,

WP

o]

Wp
WP
s WP
: 1,380
12,488
1 3.5CP
2 2,6CP

f

21.7C

:

CORRECT. ..
NAME :LEM

$RULE
NAME:HS
FROM:LEM

sFIN

(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)

Fig. 4. Use of the INIT instruction.

E=2g
Q2R
P

R
" p =>R

(@ => R)=>(P =) R)
(P => Q)=>((Q@ => R)=>(P =) R))

. 10°

1
:PROVE: (P => Q)=>((Q => R)=>(P = R)) 7¥3
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NOW REDO THE EXERCISE YOU INTERRUPTED

‘DERIVE (NOT P)=>(P -> Q)
(RIS RIS S o
;Lf_%_gé! p P~>(Q ~> P)
::g;ggz g(2)- (NOT P)=->((NOT Q)->(NOT P))
$1.2HS .

HS REQUIRES 3 LINE NUMBERS
sWp (3) NOT P
$1,2,3HS |

THE ANTECEDENT OF LINE 2 MUST BE
THE CONSEQUENT OF LINE 1

[

$2,1,3HS (4) TP =Q
:3.4CP  (5) (NOT P)->(P => Q) L
CORRECT. . .

Figo 4, continued.
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In summary, the instructional system was designed

-to increase the level of active participation bLy the

student. A student can specify a first-order theory and
build his own command language with which to conatruét
proofs., He can then (a) make up his own exercises, (b)
communicate with a proof checker to verify whether his
solutions are correct, (c) work on an axercise without
interference, i.e., he may try any solution path regardless
of whether it approaches a successful proof, and (d4)
receive immediate feedback on errors. Furthermore, he can
ask about previously learned material and‘ receive advice
and - comments on his work which take into account only the
mgterial that he knows, i.,e., material that he was taught
or that he developed, This flexibility was made possible
only by developing a system that was not restricted to a
fixed curriculum or a fixed language for communicating with
the students. Consequently, the system can be adapted to
the instructional needs of a large class of usexs and a
wide range of possible curriculums,
2. The Finding-Axioms Exercises

The possible uses for this system are varied, The
r esources of the program allow the user to axiomatize the
theoretical structures of some elementary domain of
science., For example, a graduate student in logic 1is using

the program to study axiomatizations of eleaentary

15
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£ % geometry; another is using it to develop a curriculum for
% ‘the predicate calculus and elementary number theory.

2 ” ' A program like this is suitable for problem-solving
? ” tasks of varying levels of complexity, such as the

; : Finding~Axioms Exercises, which are modeled after the
] famous R. L. Moore method of instruction. The students
} were either in an aelementary course in logic at Stanford or
q 12?year-old seventh graders from a junior high school in
Paio Alto, California. A description of this task and the

results of actual classroom use of the instructional

T AT P TR T AR DT R LU L 3 T £ T A ke
e 4
J

;o " establish a definite order of the formulas to be proved so

that one derived formula can be effectively used in

1 program follow.
4 ﬁ A Finding-Axioms Exercise consists of a 1list of
; i% well-formed formulas of a formal theory. The student must
; n select at most N formulas from which the rest can be
%: E derived and show that the selection is correct by carrying
; :% out the derivations, The student 18 encouraged ¢to

b deriving another,

) For this exercise, the logical rules of inference

] already discussed were made available to the student., The

only difference in format was the additional ability to

reference the formulas in each exercise by their numbered
position in the list. Each student was expected to infer

% [ the syntax for a well-formed expression from the formulas

13




in the 1list.

At the time we introduced +the Finding~Axioms
Exercises, the students 'had learneé a quantifiec-free
version of first-order logic, some elementary algebra an@
some Boolean algebra, Their teacher was an earlie? version
of the computer-asasisted logic program in use at IMSSS
since 1964 (Suppes and Binford, 19653 Suppes and Ihrke,
1970; Goldberg, 1971; Suppes, 1971). We could thus assume
that the students were familiar with the operation of a
teletypewriter (the student’s input device) and with the
manner in which proofs could be constructed on the
computer, The students were adept at taking advantage of
somé of the more flexible features of the new instructional
gsystem, namely, with (a) naming and renaming formulas to
find a suitable group to choose as the axioms, (b) ﬁaking
up lemmas to decrease the number of steps in soﬁe of the
more complicated proofs, and (c) devising derivation
problems with premises to test the effect of adding one or
more axioms.

The four Finding-Axioms Exercises are shown in
Figure 5. The students’ previous experience with an
axiomatization of the natural numbers made Exercise 1
conceptually easiet and gave thém an opportunity to adjust
to the featurea of the new instructional system, Most of

the <college 8students completed all four exercises;
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Exercise 4 was not given to the seventh graders because of

‘the level of difficulty of the gubstitutions required.

Insert Figure

5 about here

In Tables 1-4 we show
student for each exercise
Vafiation in the selection of
exercises, probably least in
the first exercise, Howéver,
managed to use only nine
formulas used by each student

exercise.

the axioms selected by each
in the obvious matrix form,
axioms occurred in all four
the most trivial of the four,
even here one, Student 11,
Tables 5~8 show the

axioms,

to prove the theorems in each

Insgert Tables

-t

1~8 about here.

In the case of Exercise 2, Students 12, 13 and 14,

the seventh graders, did not finish, and the axioms they

selected are not necessarily adequate--this is immediately

obvious in the case of Student 13,

These three young

students did complete Exercise 3. Tha 11 college students,

i.e., Students 1-11, all selected one of two sets of

axioms; the choice was as evenly divided as possible with

an odd number of students., Axioms 4 and 5 are definitional

in character. By ordinary axiomatic standards the choice

15
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Exercise 1.

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11,

12.

13,
14,

X+1=Y+1

Natural Numbers

=) X=Y

NOT X+1=0

About 10 axioms seem to be needed. See what you can do.

(NOT XaY) => (NOT X+1a=¥Y+1)

X+0=X

NOT X+1=X

X4+ (Y+1)=(X+Y)+1

X+¥Y=YaX
O+X=X

2x0 = 0

VA x(Y+1)=(i X Y)+2

Z x Y=Y
0 x Z2=0
2 x 1=2

NOT 0=1

X 2

Fig. 5.

Finding-mdoms Exercises,
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Exercise

AR
T S S e R I T R
. b vy ! 3 :
i
¥
3

1« XPY
2. XPY
3. NOT X
4. X QY
5..NOT X

6. X QY
7. XQY
8. X QX

2. Order Properties

'Find 4 of the 8 statements that will serve as axioms, For
intuitive purposes, think of P as greater than and Q as equal
to or greater than,

S§YPZ->XP3Z
-> NOT Y P X

P X

-> NOT Y P X
PY->YQX

OR Y Q X
§YQZ->XQ2Z

~ Fig. 5, continued.




E xXercise 3. Lattices

Phis exercise is close to the earlier work on Boolean algebra.
The operations are the Boolean operations and the relation Q

is like_the relation of subset. But there is no complementation.
stand for intersection, and V for union.

Ve let
1. X Q
2. X0
3. X Q
4, X Q
5. X~
6. X °
7. XV
8, X °
9, X V

10. X ~

11. X V

12, x °

13. X V

14. X Q

15. X Q

16. X V

17. x ©

18. X Q

19. X 0

&YQZ->XQ
&YQX->X

>X T Y=X

X->XQyY

= X
= X
=Y X
=Y VX
Yy T 2)=(x" ¥)
(Y VZ)=(X.V Y)V

Y
Y
X
Y
Y
X
X
Y
Y
( -
(X VY¥)= X

(x " Y) =X
Y&XQ2z->XY
Y =) X V ¥=Y
=aY~=>XQY

QX
vVyYy

N X K

&Y QZ=>XV
Fig.

Z [Transitivity)

=Y [Antisymmetry]

[Reflexive]

[I1dempotent]
[commutative]
2 [associative]

[Absorption]

X 2

YQZ

5, continued,
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i
: 2.
‘.
f 6.
7
8.
9.

11 statements as axioms,

B(X,X,X)

B(X,Y,Z) -> B(,Z’Y’x)

X=Y -> B(X,Y,2)

B(X,Y,W) & B(Y,Z,W)
(NOT Y=2 & B(X,Y,Z)
B(X,Y,2) & B(X,W¥,2)

B(X,Y,2) & B(Y,X,2)

%’:ﬁ
o I
l % i
| - .
i . I- 20, XQY&XQ2->XQY ™ Z
B 21. X Yoxvy
3 : A
ol 22 x T (x"¥) =x" ¥
(4
- 23. x " (Y "2) oY
1 I. 2. X" YQXVZ
] { 25. x 0 (Y " 2) VX
- { Exercise 4. Betweenness
) B(X,Y,Z) means that Y is between X and Z on a line segment,
I_ We still call it betweenness when X=Y or ¥=Z, Find 5 of the

-> B(X,Y,2)

& B(Y,z,wW)) -> B(X,Y,w)
-> B(Y,W,2) OR B(W,Y,Z)
-> X=Y

'(B(x,Y,z) OR B(Y,z,x)) OR B(Z,X,Y)

11. B(X,Y,X) => B(Z,Y,X)

10. ((NOT Y=Z) & B(X,Y,2) & B(Y,2,W)) -> B(X,2,W)

Fig. 5, continued.
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formulas no.
2,4,5,6,7

4,8
L1,6

no,

WO -~

Student Formula Proved using

ST Vs o e

EXERCISE 2
no.
8
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< v
[ o o
NNNw

' PABLE 6.
formulas no.
5

no.

- M O 0

'THEOREMS

-vStudéntvFormula Proved using
NOe.
1
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Student Formula Proved using
formula no.

no.

1

Nno.

i5

TABLE 7.

4,8,9,13
8,9,13,16
4,5,10
9,15

5,6

3,15
7.11.16
4,18 .
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of Formulas 2 and 7 as the remaining axioms is somewhat

'surprioing: certainly they ace not a choice that would be

found in any ¢text dealing with these elementary order
properties. ' |

Exercise 3 on lattices produced the ~greatest
variety of axioms, Seven students 6f the 14 used the same
set, but the remaining seven students produced five
ad&itional sets of axioms, Student 8 introduced the
following three lemmas to shorten his proofs,

Lemma 1: (NOT X Q Y)=> (NOT X V Y = Y)

Lemma 2: (NOT X Q Y)=> (NOT X ~ Y = X)

Lemma 3: (X=Y)=-> (X QYY) & (Y Q X)‘

Becaus; of its greater difficulty, Exercise 4 was
completed by only 8ix of the 11 college students, (The
college course required completion of this exercise only Ly
those students who wanted the highest grade.)
Students 8 and 11 selected adequate axioms, but did not
complete tha probfs. Various students introduced and used
the following five lemmas, |

.Lemma 1: B(X,X,Y)

Lemma 2: B(X,Y,Y)

Lemma 3% Nor (B(Y,W,Z) OR B(W,Y,Z))->

NOT B(Y,W,2) -
Lemma 4: NOT B(2Z,Y,X)=-> NOT B(X,Y,Z)
Lemma 5¢ NOT B(Z,Y,W)=-)> NOT zZ=Y

We have looked at the data on the order in which

29
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formulas that were not selected as axioms were proved by

‘each student, We also have looked at the saquence of
rejection of formulas as ﬁossibla axioms, but the data are
too elaborate to reproduce hera, and thus we hav§
restricted ourselves to points that seem of particular
interest,

In conversations with the students we found that
théy experienced some difficulty in crossing over from one
exXercise to another when identical symbols were used
(namely, Q). There was also an initial desire on the part

of the seventh graders to use theorems from one exercise

for proving theorems in another, This confusion in

distinguishing between the distinct theories might stem

from the CAI environment in which they had been studying
earlier, one in which the curriculum was designed so . that
each axiom introduced and each theorem proved were always
available for use in subsequent proofs.

To find a suitable set of axioms for a given

exercise, the students had to experiment with different i

combinations of the formulas, perhaps trying to construct
proofs for formulas already designated as axioms. In doing
this, they sometimes made an error that we term ' cycling™—-
proving Formula A 'frcm B desigﬁated as an axiom, and then
proving B from the already established Theorem A. A

trial-and-error heuristic for choosing axioms was developed

30 .
'~33

vl e vmed el ed )

§oenin] Frieem s | 4.»,‘.4._‘1 o ) F e I ‘ Do ‘ ‘ i

[y |
——t

LRSI S ST

e rarin s by s i T 1




o 3 s T VL

— Py gy

—J

—

by the students from this cycling problem: 1if the proofs

for two formulas depend on one anothar, agsume that one

should be an axiom, We offeted another heuristic: to be
able to prove things about the relationships between the
variables, pick as axioms those formulas that define the
relations in terms of one another, not just singularly.

The longest proofs were of formulas (7) and (10) of
Exércise 4, Each of the 11 college students attempted to
find a proof of Formula (7). The mean length of' these
proofs was 45 1lines, with the shortest, which used three
lemmas, being 39 lines, and the longest being 77 lines
without using any lemmas, Only three students proved
Formula (10), with proofs of 17, 32 and 43 lines. The
rather elegant shortest proof of 17 1lines is shown as

Figure 6.

Ingert Figure 6 about here

- - e .

The general response of the college students to
these exercises was surprisingly positive, Even though the
Finding—Axioms Exercises were considerably harder than the
earlier exercises 1in the course, all of the students
expressed a clear preference 'for the Finding-Axioms
Exercises, because of the apparent greater interest in the

exploratory search for axiomse as opposed to straight

31
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Fig. 6.

AXA:
AXBs

(((uor4y-z)& B(X,Y,2))& B(Y,Z,¥))=> B(X,2,W)

(1) ((NOT ¥=Z)& B(X,¥,2))& B(Y,Z,W)

(2) B(Y,2,W)

B(x,Y,2)-> B(2,Y,X)

(3) B(Y,Z,W)=> B(W,2,Y)
(4) B(W,2,Y)
(5) (NOT Y=2)& B(X,Y,2)
(6) B(x,Y,2)

B(X,Y,Z)-> B(2,Y,X)

(7) B(X,Y,2)=> B(Z,Y,X)

(8) B(z,Y,X)
(9) * NOT Y=2
(10) ~ NOT 2Z=Y

(((NoT Y=2)& B(X,Y,2))& B(Y,2,W))~> B(X,Y,W)

(11) (((NOT 2=Y)& B(W,2,Y))& B(Z,Y,X))~> B(W,z,X)
(12) (NOT ZaY)& B(W,2Z,Y)
(13) ((NOT Z=Y)& B(W,2,Y))& B(Z,Y,X)

Shortest student proof for formula (10)
(((NOT X=Y)& B(Z,X,Y))& B(X,Y,W))=-D>B(Z,X,W
B(X,Y,Z)"> B(ZQY,X)O
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$11.13AA (14) B(W,Z,X)

B B(X,Y,2)-> B(Z,Y,X)

Z3:X (15)  B(W,2,X)=> B(X,Z,W)
£15,14A0 (16) B(X,2,W) |

$1.16CP  {17) (((NOT Y-z)&»a(x,y,zj)& B(Y,Z;W));> B(X,2,W)
CORRECT... | . o |

. Fig. 6, continued.
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derivations from given axioms or premises,

The reaction of the 12-year-old students was rather
different, They had had .extensive training in proving
theorems from given axioms, and they felt uneasy at not
knowing 4immediately where to begin, or if once they
started, whether their initial subset of axioms was
actually adequate for what they wanted to prove. The
cuirect revision of the course consequently includes
counterexamplas and very elementary Finding~Axioms
Exercises almost from the beginning.

3. Theorem Provers for Instructional Use |

The reader might question the instructional worth
of having a student prove complex theorems within the
framework of a proof checker which, as so far illustrated,
expects the user to construct rigorous proofs. Az
discussed in Section 2, the limitation of the program for
teaching mathematics 1is just this requirement that the
gtudent construct an explicit formal proof for every
theorem, The routine steps of more advanced mathematical
work must be compressed and eliminated from the student’s
explicit focus of concern in order to provide adequate time
to concentrate on the crucial conceptual steps in a given
proof, |

A significant’contribution of the system to the

development of more advanced mathematicsz courses in a CAI

3h
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environment is ths use of theorem provers for instructional

‘purposes, With theorem provers, the student can instruct

the program to move from one'point to another in the proof
without explicitly carrying out the mediating steps. Th@
intention is that the skipped steps be modest and of the
right level cf difficulty for mechanical theorem provers of
a noninteractive nature. An example is repeated use of the
coﬁmutative and associative laws in a fashion that is
common in elementary algebraic arguments.,

Using the instructicnal system as a research tool,
we have been able to study possible roles mech;nical
theorem provers can play in the construction of
mathemaﬁically valid proofs by the student., As modes of
operation for the use of theorem provers, we introduced
generalized interchange laws and instantiation rules for
each axiom and proved theorem, as well as an instruction
called SHOW, For example, whenever a new expression in the
form of an identity or biconditional is established as a
true statement of a given theory, and a name is assigned to
it, the progrgm is capable of performing both the
substitution and replacement rules in one step,

The automatic generalization rule for £formulas in
the form of a conditional repre;ents a definite savings in
the number of steps required to complete a proof, as

illustrated in Figure 7 by the derivation of line (7) from




(4) and Theorem A, line (8) from (5) and Theorem A, and

‘line (9) from (6), (7), (8), and Axiom TRA., The proof
depends directly on one pre#ious theorem and one axiom,
which are shown at the bottom of the figure and which aré
part of a system of constructive plane geometry. The user
simply referenées the name of the formula and arn ordered
list of proof lines whose conjunction is a substitution
1n§tance of the antecedent of the formula, The program can
then generate the corresponding instance of the consequent,
If substitutable variables occurring in tﬁe congequent do
not occur in the antecedent, the program will ask the
student to complete the desired substitution. The ability
to derive new inference rules extends this instantiation
rule in enabling the satudent to detach from a tﬁeorem a
formula that would otherwise only be obtainable by
iterative application of medus poneng on an instance of

that theorem,

Insert Figure 7 about here

our efforts to interface the instructional system
with the theorem—proving program of Allen and Luckham
(1970) have been moderately suécesaful. ‘Bagically, our
idea 18 to let the student type a line into the proof,

thereby claiming that it is a valid inference from the work
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é i% | .~ PROVE (((NOT Y=2)& B(X,Y,2))& B(Y,Z,W))=D B(x,z,v)
2 _ "SWP (1) {(NOT Y=Z)& B(X,Y,2))& B(Y,Z,W)
ff | 1ALC (2) (NOT Y=Z)& B(X,Y,2)
; 12l (3) NOT Y=2
% i : 2RC (4) B(X,Y,2)
- $ARC  (5) B(Y,Z,W)
- :3CE1  (6) NOT Za=Y
I C34THA  (7) B(2,Y,X)
) iSTHA  (8) B(W,2,Y)
[ 16,8, 7TRA | | .
(9) . B(W,Z,X)
19THA  (10)  B(X,2,W)

$11.10CP (11) (((NOT ¥=2)& B(X,Y,2))& B(Y,Z,W))=> B(X,Z,W)
CORRECT. .. i | |
Fig. 7. A?roof using general substitution rules,

Theorem At B(X,Y,2)->(B(Z,¥,X)
Axiom TRA: (((NOT X=Y)& B(W,X,Y))& (B(X,Y,2))=>B(W,X,2)
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he has already done., He then calls on the theorem prover

‘to verify his claim. The student also must indicate which

lines already in the proof ahd what instances of axioms an@
theorems he thinkes should enter into the theorem prover’'s
computations. Formula (10) f£rom the fourth Finding-Axioms
Exercise is presentéd as an example of using the SHOW rule
(Figure 8). The SHOW rule, together with those discussed
ahbve, were used to eliminate ten lines from the minimum

student proof shown in Figure 6.

Insert Figure 8 about here

A'second Qnd closely related actiQity in which
theorem provers are useful 1is that of monitoring the
student’s qctivity'while he 18 in the process of searching
for a proof and then giving him hints oOf how he may
complete the proof he has begqun. At least in elementary
domains of mathematics this role of a theorem prover has
already been implemented as an instruction called HELP. A
heuristically based theorem prover was designed to perform
the work the student is expected to do, i.e., it constructs
proofs in the elementary theqry of Abelian groups., By
taking the steps of'the student’s partial or erroneous work
into account when searching for a solution, the theorem

prover can compute various ways to complete the student’s
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'PROVE = (((NOT YaZ)& B(X,Y,2))& B(Y;z.w))->la(x,z,w)

CaWR (1) ((NOT ¥=2)& B(X,¥.2))& B(Y.2,W)
11RC . (2) B(Y,2,W)
3 2AXB (3). B(W,2,Y)
sSHOW - . (4) {(NOT Z=¥)& B(W,Z,Y))& _134_4.1

FROM LINES OF THE DERIVATION?

$31,3

FROM AXIOMS OR THEOREMS?
::AXB B(X,Y,Z)-> B(2Z,Y,X)

XX

Yy

Z:12

s

OK? Y

LINE 4 IS K

3 4AXA (5)

¢t SAXB (6)

$1,6CP (7)

CORRECT.. .
Figo 8.

B(W,Z,X)
B(X,2,W)
(((NOT Y-Z)& B(X,Y,Z))& B(Yosz))‘> B(X.Z.W)

Proof of Formula (10), Exercise 4, using

the SHOW instruction,
AXA: (((NOT X=Y¥)& B(Z,X,Y))& B(X,Y,W))=)> B(Z,X,W)
AXB: B(X,Y,2)-> B(Z, Y,xS
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task, | From t.:hi_- 1nfom:‘|t,10n",' the instructional system can
‘generate a tutorial dialo_guo aimed at helping the student
construct a successful pi:oot. The details of using a
theorem prover as a proof analyzer to help a student
- continue his work u'- dealt with elsevhere (Gol_dbgrg,

- forthcoming).
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